Spatial Indicators for European Nature Conservation
SPIN - Spatial Indicators for European Nature Conservation
Habitat mapping approaches
Hierarchical scale concept and approved EO data sets

Adressed scale levels

Regional scale
1:200 000 – 1:50.000
HR EO-data ~ 30m res.
Landsat TM/ETM, SPOT4...

Subregional scale level
1:50 000 – 1:25 000
HR/VHR EO data ~ 30-10m res.
Landsat TM/ETM ASTER,
SPOT4...

Local scale level
1:10 000 bis 1:5 000
VHR EO data < 5m res.
IKONOS, QUICKBIRD, HRSC aerial photos

Field investigation
<1:1.000
Advanced Classification Approaches

- Knowledge based classification
- Object based classification
- Case based reasoning
- Kernel based classification

Integration of:
- Expert knowledge
- Homogenous landscape objects instead of pixels
- Context or neighbourhood information
- Ancillary data sets

SPIN - Spatial Indicators for European Nature Conservation
Applied classification approaches

<table>
<thead>
<tr>
<th>Classification Methods</th>
<th>Scale issues / Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge Based Classification</td>
<td></td>
</tr>
<tr>
<td>French test site</td>
<td>Sub-regional scale (1: 25 000)</td>
</tr>
<tr>
<td>Greek test site</td>
<td>Local and sub-regional scale (from 1: 5 000 to 1: 50 000)</td>
</tr>
<tr>
<td>Cased Based Reasoning</td>
<td></td>
</tr>
<tr>
<td>Estonian test site</td>
<td>Local scale (1: 10 000)</td>
</tr>
<tr>
<td>Object Based Approach</td>
<td></td>
</tr>
<tr>
<td>Wenger Moor Austrian test site</td>
<td>Local scale (resolution = 0.37m)</td>
</tr>
<tr>
<td>Schleswig-Holstein German test site</td>
<td>Between regional scale (from 1: 100 000 to 1: 200 000, sub-regional scale (from 1: 50 000 to 1: 25 000) and local scale (1: 10 000)</td>
</tr>
<tr>
<td>English test site</td>
<td>Local scale (1: 2 000)</td>
</tr>
<tr>
<td>Kernel Classification</td>
<td></td>
</tr>
<tr>
<td>Greek test site</td>
<td>Local scale (1: 10 000)</td>
</tr>
<tr>
<td>English test site</td>
<td>Local scale (1: 1 500)</td>
</tr>
<tr>
<td>Slovenian test site</td>
<td>Local scale (1: 10 000)</td>
</tr>
<tr>
<td>French test site</td>
<td>Local scale (1: 25 000) – Not operational</td>
</tr>
</tbody>
</table>
SPIN - Spatial Indicators for European Nature Conservation

Classification map 1990 EUNIS I
EUNIS I Habitats
- Agricultural habitats
- Coastal Ume and sand
- Constructed habitats
- Grassland habitats
- Inland surface water habitats
- Marine Water habitats
- Mine, bog and fen
- Unvegetated habitats
- Woodland habitats

Classification map 2001 EUNIS I
EUNIS I Habitats
- Agricultural habitats
- Coastal Ume and sand
- Constructed habitats
- Grassland habitats
- Inland surface water habitats
- Marine Water habitats
- Mine, bog and fen
- Unvegetated habitats
- Woodland habitats

Classification map 1990 EUNIS extended
EUNIS extended
- Agricultural habitats
- Coastal (dune and sand)
- Coniferous
- Constructed
- Deciduous
- Industrial sites
- Infrastructure
- Inland surface water habitats
- Inland unvegetated habitats
- Lithal sediments (saltmarsh)
- Marine habitats
- Meic Grassland (meadows, pasture
- Meic grassland (unmanaged/rewet)
- Meadow
- Marsh
- Mixed use
- Sedge and reed beds / Swamp wood
- Urban vegetation
- Valley mine/ Transition mines
- Waste deposits

Classification map 2001 EUNIS extended
EUNIS extended
- Agricultural habitats
- Coastal (dune and sand)
- Coniferous
- Constructed
- Deciduous
- Industrial sites
- Infrastructure
- Inland surface water habitats
- Inland unvegetated habitats
- Lithal sediments (saltmarsh)
- Marine habitats
- Meic Grassland (meadows, pasture
- Meic grassland (unmanaged/rewet)
- Meadow
- Marsh
- Mixed use
- Sedge and reed beds / Swamp wood
- Urban vegetation
- Valley mine/ Transition mines
- Waste deposits
Spatial Indicators for European Nature Conservation

EUNIS
- D5.2
- E1.5
- E2.2
- E3.4
- F3.2
- F9.2
- G1
- G3
- G5.6
- J

METADATA:
Map type: Enhanced Kernel Based Reclassification Land Cover Map
Nomenclature: EUNIS
Satellite Data: IKONOS-2, Pan-1m, MS-4m, 14/10/2001
Geodata: Ground Truth Dataset (aerial stereo-interpretation), Digital Elevation Model
demoprodct_WP3500.doc

WP 3500: Demo Map Product
Very High Resolution Classification
EUNIS Nomenclature

Enhanced Kernel Based Reclassification
Pivka Valley at Postojna Test Area
Fall 2001

Scale 1: 25000
State Coordinate System D48
Gauss - Krueger Projection

Slovenian Forestry Institute

SPIN - Spatial Indicators for European Nature Conservation
Comparsion of monitoring techniques

HRSC 2001 semi-automated airborne (4m)

BNTK 1990 visual interpretation of CIR

field mapping

FFH 2001

Classes
- Bog Molina Group
- Reeds
- Bog Swamp
- Wet Grassland
- Bog Woods and shrubs
- Managed Grassland
- Extensive Grassland
- Tree Lines and Groups
- Forest
- Arable
- Water
- Urban Green
<table>
<thead>
<tr>
<th>Criteria/Task</th>
<th>Standard mapping approaches</th>
<th>Remote Sensing based classification approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Field mapping</td>
<td>VHR spatial res. < 5m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Object oriented</td>
</tr>
<tr>
<td>Geometric accuracy</td>
<td>+</td>
<td>++/+-</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>++</td>
<td>++/+</td>
</tr>
<tr>
<td>Spectral/-content resolution</td>
<td>++</td>
<td>++/0</td>
</tr>
<tr>
<td>Temporal resolution</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Further digital processing</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Area covered</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>Methodology development</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Costs</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>Monitoring of species</td>
<td>++</td>
<td>0</td>
</tr>
<tr>
<td>Monitoring of habitats</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Monitoring of large areas</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Aptness for landscape planning at scales $\leq 1:5000$</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Aptness for landscape planning at scales $\leq 1:25000$</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Aptness for landscape planning at scales $\leq 1:100,000$</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
PCA Change Detection: Integration in ERDAS Imagine

PC 1: stable image features

PC 2: change, no change + noise

Histogram PC1

Histogram PC2

Input File Date 1 (*.img)

test1.img

Input File Date 2 (*.img)

test2.img

Process Layer List 1

1,2,3,4,5,6

Process Layer List 2

1,2,3,4,5,6

Index output (*.img)

outputfuzzyindex.img

Index Stack output (*.img)

outputindexstack.img

Fuzzy Rule

AND

OR

XOR

Create Index Stack

OK

Cancel

Subset Definition:

Intersection (default)

From Inquire Box

UL X: 3434948.00

UL Y: 6070969.00

LR X: 3512138.00

LR Y: 6046179.00

SPIN - Spatial Indicators for European Nature Conservation
SPIN - Spatial Indicators for European Nature Conservation

General Change Probability
- High general
- Specific WetDiff Change Prob.
 - very High vH
 - High H
 - medium High mH

Class to Class Change
Grassland TO
- Mire, bog and fen
- Agricultural
Spatial Indicators for European Nature Conservation

- Spin - Spin - Spin - Spin

Year of water retention realisation:
- 1980
- 1982/83
- 1983/84
- 1995/96
- 2001

Change detection analysis:
- Proliferation of wetness
- Minor increase of wetness
- Bog - no vegetation change
- Grassland to fallow land
- Water - no vegetation change
- Mowed grassland - no vegetation change

Verein für Naturschutz und Landschaftspflege
- Mittelmas Nordhessland e.V. (Rabeler) 2002
Table 4. Comparison of three change detection methods: vegetation maps in field campaigns, change detection analysis with Landsat data and interpretation of CIR-aerial photographs

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Change analysis of vegetation maps<sup>a</sup></th>
<th>Change detection method by Weiers, Wissen, Bock, and Schade (2001) applied to Landsat data</th>
<th>Visual interpretation of CIR-aerial photographs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position accuracy</td>
<td>0</td>
<td>0<sup>b</sup></td>
<td>+</td>
</tr>
<tr>
<td>Geometric resolution</td>
<td>+</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>Radiometric resolution</td>
<td>–</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Temporal resolution</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Covering of the monitoring area</td>
<td>–</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Detecting of vegetation changes</td>
<td>+</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>Detecting of other changes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Water content in soils/plants</td>
<td>0<sup>c</sup></td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>2) Mowing</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Digital analysis, editing</td>
<td>–</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Temporal effort<sup>d</sup></td>
<td>–</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Financial effort<sup>d</sup></td>
<td>–</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Best application for:</td>
<td>Monitoring exact changes of single plants or composite of plant communities in small areas</td>
<td>Detecting of large area changes, changes of water content in soils/plants or mowing change</td>
<td>Detecting vegetation changes at biotope level</td>
</tr>
</tbody>
</table>

Note: +, good; 0, moderate; –, insufficient.

^aThe position of survey quadrants is best marked using a GPS, since orientation in bogs is very difficult.

^bThe position accuracy is exact, but the low geometric resolution reduces the position accuracy on small study areas.

^cThe water content in soils can be detected indirectly by indicator values or direct by complex laboratory analysis.

^dTemporal and financial effort include all necessary worksteps to receive a satisfactory result. Some of these worksteps are, e.g. the field campaign, the production of an aerial photograph, ordering the data, digitising and the analysis of the data.
Spatial Indicators for European Nature Conservation

www.spin-project.org

SPIN Demo CD
Email to: Michael.Bock@dlr.de